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a b s t r a c t

Many high temperature oxides and low temperature polymeric materials transport protons, oxygen ions,
and electrons or holes. These materials are candidates as membranes for fuel cells and electrolyzers.
This manuscript examines non-equilibrium steady state transport through such membranes under the
assumption of local equilibrium. A simple equivalent circuit analysis is given for transport through mixed
proton, oxygen ion, and electron (hole) conducting membranes. The cell potential can be described in

+ 2−

eywords:
roton
xygen ion
uel cell
oupled transport
nsager equations

terms of transport parameters of charged species (H , O and e or h) and internal EMFs given in terms
of chemical potentials of neutral species (�H2 , �O2 ). The resulting equation for cell potential is similar to
the Goldman–Hodgkin–Katz (GHK) equation used in cell physiology. Transport through a fuel cell based
on such materials is examined. Effects of electrolyte/electrode interfaces are explicitly included in the
analysis. Fluxes of H2 and O2 through the membrane are evaluated at open circuit and under load. They
obey Onsager reciprocity relations, inclusive of interface effects. The analysis also shows that the chemical

nd ele
potentials of H2 and O2 a

. Introduction

In aqueous systems of interest in cell physiology and other
reas, transport of electrically charged species is commonplace.
xamples include transport of ionic species across biological or
olymeric membranes. In such cases, either side of the membrane
as aqueous media containing ionic species in solution. Concen-
rations of the various ionic species are generally different on the
wo sides of the cell membrane. The cell membrane also typically
ontains water (hydrated). Transport of ionic species across cell
embranes occurs under electrochemical potential gradients. Elec-

rically charged species are ionic (cations and anions) and no net
lectrical current transports through the membrane. Several ionic
pecies can be in solution and their transport occurs to varying
egrees, depending upon their relative concentrations and mobil-

ties. In a non-equilibrium steady state with concentrations of the
arious species in the two reservoirs assumed fixed, steady state
uxes of ionic species are established across the membrane. This

eads to the establishment of an electrical voltage difference across

he cell membrane, the cell potential, which can be described in
erms of the concentrations of ionic species in the two reservoirs
nd their transport parameters across the membrane. The resulting
quation is known as the Goldman–Hodgkin–Katz (GHK) equa-
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ctric potential, ϕ, exhibit abrupt changes across interfaces.
© 2009 Elsevier B.V. All rights reserved.

tion or sometimes as Goldman equation [1,2]. The GHK equation
assumes equilibration of compositions of the various ionic species
at liquid/membrane interfaces.

Aqueous and other liquid electrolyte solutions always contain
mobile cations and mobile anions. Thus, local equilibrium can be
described in terms of local chemical or electrochemical potentials
of the ions. For example, for an ionic salt of the type MmXn dissolved
in water, the dissociation reaction at equilibrium is

MmXn ⇔ mMn+ + nXm− (1)

where the valence of the cation is n and that of the anion is −m. The
corresponding local equilibrium may be given by

�MmXn = m�Mn+ + n�Xm− = m�̃Mn+ + n�̃Xm− (2)

where the �is are the respective chemical potentials and �̃is are
the electrochemical potentials, the latter given by

�̃i = �i + ziF˚ (3)

where zi is the valence, F is the Faraday constant,1 and ˚ is the local
electrostatic potential. Although not commonly used, it is under-

stood that local equilibria may additionally be given with respect
to the neutral species by reactions of the type

M ⇔ Mn+ + ne′ (4)

1 All chemical potentials and electrochemical potentials are defined on a molar
basis.

http://www.sciencedirect.com/science/journal/03787753
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dx.doi.org/10.1016/j.jpowsour.2009.06.007
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Nomenclature

List of symbols
� electrolyte thickness (cm)
rc
e = ıc

�c
e

cathode/electrolyte interface electronic area specific

resistance (� cm2)
ra
e = ıa

�a
e

anode/electrolyte interface electronic area specific

resistance (� cm2)
rel
e = �

�el
e

electrolyte electronic area specific resistance

(� cm2)
rc

O2− = ıc
�c

O2−
cathode/electrolyte interface oxygen ion area

specific resistance (� cm2)
ra

O2− = ıa
�a

O2−
anode/electrolyte interface oxygen ion area spe-

cific resistance (� cm2)
rel

O2− = �
�el

O2−
electrolyte oxygen ion area specific resistance

(� cm2)
rc

H+ = ıc
�c

H+
cathode/electrolyte interface proton area specific

resistance (� cm2)
ra

H+ = ıa
�a

H+
anode/electrolyte interface proton area specific

resistance (� cm2)
rel

H+ = �
�el

H+
electrolyte proton area specific resistance (� cm2)

IO2− oxygen ion current density through the membrane
(A cm−2)

IH+ proton current density through the membrane
(A cm−2)

Ie electronic current density through the membrane
(A cm−2)

IL load current (as current density) (A cm−2)
Re = rc

e + rel
e + ra

e electron area specific resistance of the
membrane (� cm2)

RO2− = rc
O2− + rel

O2− + ra
O2− oxygen ion area specific resistance

of the membrane (� cm2)
RH+ = rc

H+ + rel
H+ + ra

H+ proton area specific resistance of the

membrane (� cm2)
X = RH+ Re + RO2− Re + RH+ RO2− (�2 cm4)
RL load (given as area specific load) (� cm2)
R′

e = ReRL
(Re+RL) net electronic area specific resistance including

internal electronic resistance and load (� cm2)
X′ = RH+ R′

e + RO2− R′
e + RH+ RO2− (�2 cm4)

pO2 oxygen partial pressure
pH2 hydrogen partial pressure
pH2O partial pressure of H2O
R ideal gas constant (J mol−1 K−1)
kB Boltzmann constant (J K−1)
T absolute temperature (K)
F Faraday constant (C mol−1)
zi valence of species i
e electronic charge (C)
EO2 Nernst voltage related to differences in �O2 across

the membrane (V)
EH2 Nernst voltage related to differences in �H2 across

the membrane (V)
JO2 flux of O2 through the membrane (mol s−1 cm−2)
JH2 flux of H2 through the membrane (mol s−1 cm−2)
JO2− flux of oxygen ions through the membrane

(mol s−1 cm−2)
JH+ flux of protons through the membrane

(mol s−1 cm−2)
Lij Onsager coefficient (mol2 cm−2 s−1 J−1

Greek letters
�c

e cathode/electrolyte interface electronic conductiv-
ity (S cm−1)

�a
e anode/electrolyte interface electronic conductivity

(S cm−1)
�el

e electrolyte electronic conductivity (S cm−1)
�c

O2− cathode/electrolyte interface oxygen ion conductiv-

ity (S cm−1)
�a

O2− anode/electrolyte interface oxygen ion conductivity

(S cm−1)
�el

O2− electrolyte oxygen ion conductivity (S cm−1)
�c

H+ cathode/electrolyte interface proton conductivity

(S cm−1)
�a

H+ anode/electrolyte interface proton conductivity

(S cm−1)
�el

H+ electrolyte proton conductivity (S cm−1)
ıc cathode/electrolyte interface thickness (cm)
ıa anode/electrolyte interface thickness (cm)
�O2 chemical potential of oxygen (J mol−1)
�H2 chemical potential of hydrogen (J mol−1)
�H2O chemical potential of H2O (J mol−1)
�e chemical potential of electrons (J mol−1)
˚ electrostatic potential (V)
�̃i = �i + zie˚ electrochemical potential of species i
(J mol−1)
ϕ = − �̃e

F = − �e
F + ˚ electric potential (V)

and

X + me′ ⇔ Xm− (5)

with local equilibria given by

�M = �Mn+ + n�e = �̃Mn+ + n�̃e (6)

and

�X + m�̃e = �̃Xm− (7)

where �e and �̃e are respectively chemical and electrochemical
potentials of electrons. The �e in an aqueous solution is a well
defined quantity even if the actual concentration of electrons may
be negligible so that negligible current is carried by electrons.
By virtue of the presence of mobile cations and anions, explicit
incorporation of electron/hole chemical potentials is generally not
required. Many high temperature materials, however, exhibit sub-
stantial mobility for typically only one species. For example, high
temperature cubic phase of ZrO2 stabilized with Y2O3 exhibits sig-
nificant oxygen ion conduction (via a vacancy mechanism) above
about 400 ◦C. Yttrium (Y3+) and zirconium (Zr4+) ions are essen-
tially ‘frozen’ in place and exhibit no detectable conductivity [3].
Description of local equilibrium in these materials with respect to
transporting oxygen ions requires the incorporation of electronic
defects – electrons or holes. For example, in an oxygen ion conduc-
tor with negligible mobility for cations, local equilibrium reaction
may be given by

1
2 O2 + 2e′ ⇔ O2− (8)

with local equilibrium given by
1
2

�O2 + 2�̃e = �̃O2− (9)

Local equilibrium between oxygen ions, neutral oxygen and elec-
trons (holes) is generally assumed regardless how low might be the
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lectronic conductivity, which is still much greater than ionic con-
uction of Y3+ and Zr4+. There are a number of solid state oxygen

on, fluoride ion, chloride ion, sodium ion, lithium ion, potassium
on, and silver ion conductors in which only one mobile ion exists.
n all such materials, local equilibrium must be written in terms
f electrons (holes). This is an important difference between the
xtensively investigated aqueous electrolyte solutions and solid
lectrolytes, and yet often ignored in studies on solid electrolytes
4].

There are many alkaline earth perovskite oxides (e.g. Y-doped
aCeO3) which are predominantly oxygen ion and/or electron hole
onductors in a dry atmosphere [5]. When heated in water vapor,
hey dissolve water thus becoming proton conductors [5]. Such

aterials thus can transport two ionic species (H+ and O2−) in addi-
ion to electrons/holes. Potential applications of these materials are
n intermediate temperature (400–700 ◦C) fuel cells, electrolyzers,
nd hydrogen separators.

Transport through membranes when multiple species exhibit
ignificant mobilities has been extensively addressed in biologi-
al systems. In such systems, significant swelling of the membrane
ccurs. Many reported works address this aspect by accounting
or various frames of reference. In the oxide materials considered
ere, cation immobility implies rigid lattice and thus a fixed frame
f reference. Analysis of transport in biological systems has been
xamined using what is known as ‘network thermodynamics’ in
hich analogies between electrical circuits and transport through
embranes are drawn [6]. Using this approach, various parame-

ers such as resistances and capacitances can be given in terms of
ransport parameters of the membrane and thermodynamics of the

aterials/systems.
In this manuscript, an equivalent circuit approach is used to

xamine transport through mixed proton, oxygen ion, and elec-
ron (hole) conducting membranes under steady state fuel cell
onditions. Local equilibrium is assumed in an otherwise non-
quilibrium state [7]. Thus, the present analysis is part of the
eneral topic of non-equilibrium steady state [8,9]. By virtue of the
ssumption of steady state, no changes in ‘capacity’ occur. Thus,
he equivalent circuit can be fully described in terms of various
esistances and internal EMFs, the latter related to the chemical
otentials of the various neutral species. This allows for a complete
escription of steady state in terms of thermodynamic potentials
nd dissipative components.

. Analysis

We consider a solid dense membrane (no porosity in the mem-
rane) capable of transporting protons (H+), oxygen ions (O2−), and
lectrons (e) or electron holes (h). Transport of electrons or holes
ill be treated in terms of a single electronic conductivity which

mbodies transport of either or both electronic species. Two porous
lectrodes, cathode and anode, are applied on the two surfaces of
he membrane. A mixture of gaseous O2 and H2O is supplied at
he cathode and a mixture of gaseous H2 and H2O is supplied at
he anode. An external load is connected across the cathode and
he anode. Fig. 1 shows a schematic. Cathode/membrane (c) and
node/membrane (a) interfaces are each characterized by three sets
f area specific resistances (in � cm2)—one set for the transfer of

+ across the interfaces (rc

H+ , ra
H+ ), one set for the transfer of O2−

cross the interfaces (rc
O2− , ra

O2− ), and one set for the transfer of

lectrons/holes across the interfaces (rc
e , ra

e ).2 Area specific resis-
ances for ion transfer across interfaces can be given in terms of

2 The interfacial resistances defined here do not include extended electrochemical
ones of porous electrodes.
Fig. 1. A schematic of a fuel cell. The locations of the chemical potentials of H2

just inside the electrolyte (�c
H2

, �a
H2

) and just across into the electrodes (�I
H2

, �II
H2

)

are labeled in the schematic. The same applies to the other chemical potentials,
electrochemical potentials and ϕ.

fundamental charge transfer mechanisms and may be described
phenomenologically by models such as the Butler–Volmer model.
Area specific resistances for electron transport across interfaces
(rc

e , ra
e ) are measures of direct electron transfer between the elec-

trodes and the electrolyte. For many situations, electron transport
through the electrolyte (and across interfaces) is negligible. How-
ever, it is not mathematically zero. This means rc

e , ra
e may be very

large, but are not infinite [10]. Transport through the membrane
is characterized by area specific resistances for H+ transport, O2−

transport, and electron/hole transport through the membrane.
These can be given in terms of the respective bulk conductivities.

Local equilibrium gives for all regions of the membrane and the
adjacent gas phases the following relations:

H2 + 1
2 O2 ⇔ H2O (10)

which gives

�H2 + 1
2

�O2 = �H2O (11)

1
2 H2 ⇔ H+ + e′ (12)

which gives

1
2

�H2 = �̃H+ + �̃e (13)

and Eqs. (8) and (9) describe local equilibrium for oxygen. The
above (local) equilibria exist everywhere in the system, including
the dense membrane. An important point to note is that chemical
potentials of gaseous species are defined in fully dense membranes
(no/negligible porosity in the bulk of the membrane) even when
the amount of species existing as gas within the solid is negligible
(or mathematically zero) [11,12].
At the gas phase/electrolyte (membrane) interface I, on the gas
phase side of the interface, local equilibrium gives

�I
H2

+ 1
2

�I
O2

= �I
H2O (14)
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Let I be the cathode. Then, it is understood that for a fuel cell, the
athode predominantly has O2 and H2O, but very little H2; that is
O2 , pH2O � pH2 . At the gas phase/electrolyte (membrane) interface
I, on the gas phase side of the interface, local equilibrium gives

II
H2

+ 1
2

�II
O2

= �II
H2O (15)

Let II be the anode. Then, it is understood that for a fuel cell,
he anode predominantly has H2 and H2O, but very little O2; that
s pH2 , pH2O � pO2 .

Local equilibrium inside the electrolyte (membrane), just under
he cathode/electrolyte interface, is given by

c
H2

+ 1
2

�c
O2

= �c
H2O (16)

Local equilibrium inside the electrolyte (membrane), just under
he anode/electrolyte interface, is given by

a
H2

+ 1
2

�a
O2

= �a
H2O (17)

The general transport equation for a charged species is

i = − �i

ziF
∇�̃i (18)

here �i is the conductivity due to species i and Ii is the current
ensity due to the transport of species i. This gives

H+ = −�H+

F
∇�̃H+ = −�H+

2F
∇�H2 − �H+∇ϕ (19)

O2− = �O2−

2F
∇�̃O2− = �O2−

4F
∇�O2 − �O2−∇ϕ (20)

e = �e

F
∇�̃e = −�e∇ϕ (21)

here

= − �̃e

F
= −�e

F
+ ˚ (22)

An important point to note is that what one experimentally mea-
ures using a metal wire probe is ϕ (electric potential) and not
he electrostatic potential, ˚. Much of the literature on aqueous
lectrochemistry only refers to the electrostatic potential, ˚ [13].

For the interface at I, the various area specific resistances
� cm2) are as follows:

c
H+ = ıc

�c
H+

(23a)

c
O2− = ıc

�c
O2−

(23b)

nd

c
e = ıc

�c
e

(23c)

here ıc is the cathode/electrolyte interface thickness (which could
e in the nanometer or fractions of a nanometer range and the inter-

acial region need not be physically distinct), and �c
H+ , �c

O2− and �c
e

re respectively proton, oxygen ion and electronic conductivities
f the cathode/electrolyte interface. Although the exact character
nd the thickness of the interface are not readily subject to inde-
endent experimental determination, some important features are
s follows. The interface region should include one (or few) atomic
ayers of the solid and one (or few) layers of the gas phase (possibly
dsorbed). The surface layer of the solid must always be ‘different’

rom the bulk region due to the presence of unsatisfied bonds. Thus,
hrough this region, the transport properties must also in general be
ifferent from the bulk. Similarly, the adsorbed layer will also have
ifferent properties than the gas phase. In this discussion, the thick-
ess of this interface is meant to include this transition region (a few
rces 194 (2009) 753–762

atomic layers thick) which is different from both the solid and the
gas phases. Indeed, similar approach has also been used to describe
interfaces between liquid and vapor using non-equilibrium molec-
ular dynamics simulations [14]. The interface defined here does not
include relatively long range effects such as the space charge, which
can be readily included separately.

Similarly, for the anode/electrolyte interface (II), the area specific
resistances are

ra
H+ = ıa

�a
H+

(24a)

ra
O2− = ıa

�a
O2−

(24b)

and

ra
e = ıa

�a
e

(24c)

where ıa is the anode/electrolyte interface thickness, and �a
H+ , �a

O2−
and �a

e are respectively proton, oxygen ion and electronic conduc-
tivities of the anode/electrolyte interface. In general, even though
the interface conductivities and thicknesses are not separately mea-
surable, interface area specific resistances can be measured, at least
in principle, using techniques such as impedance spectroscopy.

Finally, for the bulk electrolyte membrane, the area specific
resistances are

rel
H+ = �

�el
H+

(25a)

rel
O2− = �

�el
O2−

(25b)

and

rel
e = �

�el
e

(25c)

where � is the membrane thickness, and �el
H+ , �el

O2− and �el
e are

respectively proton, oxygen ion and electronic conductivities of the
membrane. These in principle can be separately measured and are
typically functions of composition (defect chemistry), atmosphere
and temperature. For example, oxygen ion conductivity, �el

O2− , may
be given in terms of the oxygen vacancy concentration and the
oxygen vacancy diffusivity (mobility). An example is

�el
O2− = 4e2

DV
••
O

kBT

[
V

••
O

]
(26)

where e is the electronic charge, DV
••
O

is the oxygen vacancy diffusiv-

ity and
[
V

••
O

]
is the oxygen vacancy concentration. Defect chemistry

relations can be readily given for specific cases for all species. These
are material and atmosphere dependent. The following discussion
is applicable regardless of the details of defect chemistry. For this
reason, no particular defect mechanism is assumed in what follows.

Integration and rearrangement of Eqs. (19) through (21) (for a
one dimensional case) assuming transport parameters are constant,
independent of position, gives

�c
O2

= �I
O2

+ 4F
{

rc
O2− IO2− − rc

e Ie
}

= �I
O2

+ 4Frc
O2− IO2− − 4F

{
ϕI − ϕc

}
(27)

�c
H2

= �I
H2

− 2F
{

rc
H+ IH+ − rc

e Ie
}

= �I
H2

− 2Frc
H+ IH+ + 2F

{
ϕI − ϕc

}
(28)

and

ϕc = ϕI − rc
e Ie (29)
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here all thermodynamic potentials (�s and ϕ) with superscript c
efer to values in the membrane just inside the cathode/electrolyte
nterface.

Similarly, for the anode/electrolyte interface (just inside the
embrane)

a
O2

= �II
O2

− 4F
{

ra
O2− IO2− − ra

e Ie
}

= �II
O2

− 4Fra
O2− IO2− + 4F

{
ϕa − ϕII

}
(30)

a
H2

= �II
H2

+ 2F
{

ra
H+ IH+ − ra

e Ie
}

= �II
H2

+ 2Fra
H+ IH+ − 2F

{
ϕa − ϕII

}
(31)

nd

a = ϕII + ra
e Ie (32)

here all thermodynamic potentials (�s and ϕ) with superscript a
efer to values in the membrane just inside the anode/electrolyte
nterface.

Eqs. (27) through (32) describe thermodynamic potentials
ithin the electrolyte, just under the electrode/electrolyte inter-

aces. The most important feature of these equations is that they
escribe thermodynamic potentials in terms of ionic and electronic
urrents. Thus, by virtue of the presence of terms containing prod-
cts of electronic resistances and electronic currents, that is of the
ype ra

e Ie and rc
e Ie, it is to be noted that one cannot a-priori assume

lectronic resistances as being infinite (that is ra
e /= ∞ and rc

e /= ∞),
s is commonly done. This is because if the electronic resistance
s infinite, then Ie will go to zero resulting in indeterminate terms
∞ × 0) in Eqs. (27) through (32), making thermodynamic poten-
ials indeterminate—and thus violating local equilibrium [7,12].
ased on considerable work done on non-equilibrium thermo-
ynamics, it is now well established that local equilibrium is
pplicable in virtually all practical systems of interest, such as the
ne considered here. Thus, local equilibrium must be valid—which
ere means electronic resistance cannot be assumed to be infinite.

.1. The equivalent circuit

An equivalent circuit describing steady state transport can be
onstructed for each of the segments. This is described in what
ollows.

.1.1. The cathode/electrolyte interface segment
Rearrangement of Eq. (28) for the change in chemical potential

f H2 across the cathode/electrolyte interface gives

�c
H2

− �I
H2

2F
+ rc

H+ IH+ = ϕI − ϕc = rc
e Ie (33)

Note that ϕI − ϕc = rc
e Ie is the ‘voltage’ drop or ‘electric potential’

rop across the cathode/electrolyte interface. Write

c
H2

=
�c

H2
− �I

H2

2F
> 0 (34)

Note this is the Nernst potential which relates the change in free
nergy of transferring one mole of hydrogen from c to I (cathode).

Thus,

c + rc
+ I + = rc

e Ie = ϕI − ϕc (35)
H2 H H

imilarly,

�I
O2

− �c
O2

4F
+ rc

O2− IO2− = ϕI − ϕc = rc
e Ie (36)
Fig. 2. Equivalent circuits for the cathode/electrolyte interface (a), the electrolyte
(b), and electrolyte/anode interface (c).

Write

Ec
O2

=
�I

O2
− �c

O2

4F
> 0 (37)

Note this is the Nernst potential which relates the change in free
energy of transferring one mole of oxygen from I to c (cathode).

Thus,

Ec
O2

+ rc
O2− IO2− = rc

e Ie = ϕI − ϕc (38)

Fig. 2(a) shows the equivalent circuit for the cathode/electrode
interface portion of the cell. Note that

Ec
O2

− Ec
H2

=
�I

H2O − �c
H2O

2F
(39)

In general the magnitudes of Ec
H2

and Ec
O2

will be different. The

only condition for which they would be the same will be if �I
H2O =

�c
H2O, which would be a very unlikely case. In general, �I

H2O /= �c
H2O,

even when the partial pressures of H2O may be the same at the
cathode and anode, i.e., even when �I

H2O = �II
H2O (which would be

the case if fuel and oxidant are humidified to the same degree). This
aspect will be discussed later.

2.1.2. The electrolyte segment
Similar analysis as above for the electrolyte segment gives

ϕc − ϕa = rel
e Ie (40)

For hydrogen,

el
�a

H2
− �c

H2
EH2
=

2F
> 0 (41)

and

Eel
H2

+ rel
H+ IH+ = rel

e Ie = ϕc − ϕa (42)
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For oxygen,

el
O2

=
�c

O2
− �a

O2

4F
> 0 (43)

nd

el
O2

+ rel
O2− IO2− = rel

e Ie = ϕc − ϕa (44)

Note that

el
O2

− Eel
H2

=
�c

H2O − �a
H2O

2F
(45)

In general, the magnitudes of Eel
H2

and Eel
O2

, are different. Fig. 2(b)
hows the equivalent circuit for the electrolyte portion of the cell.

.1.3. Anode–electrolyte segment
Similar analysis for the electrolyte/anode interface gives

a − ϕII = ra
e Ie (46)

For hydrogen

a
H2

=
�II

H2
− �a

H2

2F
> 0 (47)

nd

a
H2

+ ra
H+ IH+ = ra

e Ie = ϕa − ϕII (48)

For oxygen

a
O2

=
�a

O2
− �II

O2

4F
> 0 (49)

nd

a
O2

+ ra
O2− IO2− = ra

e Ie = ϕa − ϕII (50)

Note that

a
O2

− Ea
H2

=
�a

H2O − �II
H2O

2F
(51)

In general, the magnitudes of Ea
H2

and Ea
O2

, are different. Fig. 2(c)
hows the equivalent circuit for the anode/electrolyte interface
ortion of the cell.
Equivalent circuit for the complete cell at open circuit is merely
series connection of the three segments. The general case is one
here an external load is connected. This is shown in Fig. 3. The

arious parameters of the equivalent circuit are given in what fol-
ows.

ig. 3. An equivalent circuit for a fuel cell with a mixed proton, oxygen ion and electron/h
otentials within the electrolyte, just across electrode/electrolyte interfaces, are defined. Th
rces 194 (2009) 753–762

2.2. Nernst voltages

The Nernst voltages are given by

EO2 = Ec
O2

+ Eel
O2

+ Ea
O2

= RT

4F
ln

(
pI

O2

pII
O2

)
=

�I
O2

− �II
O2

4F
(52)

and

EH2 = Ec
H2

+ Eel
H2

+ Ea
H2

= RT

2F
ln

(
pII

H2

pI
H2

)
=

�II
H2

− �I
H2

2F
(53)

The EO2 and EH2 are in general different. They will be equal only
if �I

H2O = �II
H2O (that is the same degree of humidification at both

electrodes).

2.3. Cell ionic and electronic area specific resistances including
membrane/electrode interfaces

The various cell area specific resistances are

RO2− = rc
O2− + rel

O2− + ra
O2− (54)

RH+ = rc
H+ + rel

H+ + ra
H+ (55)

Re = rc
e + rel

e + ra
e (56)

2.4. The current densities

The various current densities are IH+ , IO2− , Ie, and IL (IL is the
load current, given as current density per unit electrode area). In
the above the signs of the various current densities (with respect
to Figs. 1 and 3, and with the positive direction through the mem-
brane from left to right—from the cathode through the membrane
to the anode) are as follows: IO2− < 0, IH+ < 0, Ie > 0, and IL < 0. The
relationship between the current densities is

IL = IO2− + IH+ + Ie (57)

In terms of the various resistances and current densities, the cell
voltage is given by

I II
V = ϕ − ϕ = IeRe = −ILRL = EO2 + IO2− RO2− = EH2 + IH+ RH+ (58)

Analysis of the equivalent circuit shows that the cell voltage,
V = ϕ I− ϕII is given by

V = ϕI − ϕII = E −
∣∣IL∣∣Rcell (59)

ole conducting membrane. The block arrows show the locations where the various
e circuit elements between the filled circles at the ends are not physically separable.
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rc
O2− , ra

O2− ), RH+ (i.e. rc
H+ , ra

H+ ) and Re (i.e. rc
e , ra

e ). It was assumed in the
foregoing that transport properties of the membrane are position-
independent. If the transport properties do depend on position, the
A.V. Virkar / Journal of Pow

here |IL| is the magnitude of the load current, the cell open circuit
oltage (OCV) is

=
(

EO2

RO2−
+ EH2

RH+

)
RO2− RH+ Re

(RH+ Re + RO2− Re + RH+ RO2− )
(60)

nd the cell area specific resistance is

cell = RO2− RH+ Re

(RH+ Re + RO2− Re + RH+ RO2− )
(61)

For convenience of a shortened notation we will write in what
ollows

= RH+ Re + RO2− Re + RH+ RO2− (62)

The short circuit current density is given by

IL(s)

∣∣ =
(

EO2

RO2−
+ EH2

RH+

)
(63)

Both the V and |IL| are functions of the load, RL. The power density
t any load is simply the product of V and |IL|.

The OCV (Eq. (60)) is effectively the cell potential as defined
n the Goldman–Hodgkin–Katz equation [1,2], which is the cell
otential (an experimentally measured quantity) in terms of the

ndividual Nernst voltages and transport parameters. In much of the
iterature on solid electrolytes, the cases on interest involve a single
ernst voltage. An example of a system with two Nernst potentials

s described here for a solid electrolyte membrane transporting two
ons. In biological/aqueous systems, the GHK equation is given in
erms of the properties of the membrane and ignoring the effects
f interfaces. If the membrane is thin, however, interface contribu-
ions dominate transport resistance through the membrane. Thus,
or thin membranes, it is necessary to include interface effects. Eqs.
60) and (61) given here do take into account interface effects and
hus are applicable to membranes of any thickness.

For a predominantly O2− conductor with negligible H+ con-
uction and negligible electron transport, Eq. (59) reduces to V =
I − ϕII = EO2 −

∣∣IL∣∣RO2− . For a predominantly H+ conductor with
egligible O2− conduction and negligible electron conduction, Eq.
59) reduces to V = ϕI − ϕII = EH2 −

∣∣IL∣∣RH+ . These equations are
ommonly used when describing a solid oxide fuel cell (SOFC) based
n an oxygen ion conductor (e.g. YSZ) [15] or a proton exchange
embrane fuel cell (PEMFC) using a proton conductor. Eqs. (58)

hrough (63) and the equivalent circuit describe the behavior of
ixed proton, oxygen ion, electron (hole) conducting membranes,

uch as various doped alkaline earth perovskites (e.g. Y-doped
aCeO3 or Y-doped BaZrO3). These equations also take into account
ransport of all three species (H+, O2− and electrons/holes) across
lectrode/membrane interfaces.

.5. Transport under open circuit condition (OCV)

At OCV, the load current is zero. When the load current is zero
|IL| = 0), that is when the load resistance is infinite, no net current
ows through the cell. In such a case, IO2− + IH+ + Ie = 0. Solution to
he transport equations for proton and oxygen ion current densities
ives,

O2− = −Re + RH+

X
EO2 + Re

X
EH2 (64)
nd

H+ = Re

X
EO2 − Re + RO2−

X
EH2 (65)

Eqs. (64) and (65) satisfy Onsager reciprocity relations, as is to
e expected. The corresponding electronic current density is given
rces 194 (2009) 753–762 759

by3

Ie = RH+

X
EO2 + RO2−

X
EH2 (66)

The ion fluxes (in mol cm−2 s−1) are related to the current den-
sities as follows:

IO2− = −2FJO2− (67)

and

IH+ = FJH+ (68)

There is no net current flowing through the cell. The ion fluxes
are equivalent to the corresponding neutral species ‘permeation’
fluxes. Thus,

IO2− = −2FJO2− = −4FJO2 (69)

and

IH+ = FJH+ = 2FJH2 (70)

where JO2 and JH2 are permeation fluxes of O2 and H2 respectively
across the membrane (cell).

Eqs. (69) and (70) thus can be rearranged to read

JO2 = −Re + RH+

16F2X
��O2 − Re

8F2X
��H2 (71)

and

JH2 = − Re

8F2X
��O2 − Re + RO2−

4F2X
��H2 (72)

where

��O2 = �II
O2

− �I
O2

(73)

and

��H2 = �II
H2

− �I
H2

(74)

Note Eqs. (71) and (72) are of the form

JO2 = −LO2O2 ��O2 − LO2H2 ��H2 (75)

JH2 = −LH2O2 ��O2 − LH2H2 ��H2 (76)

where

LO2O2 = Re + RH+

16F2X
(77)

LH2H2 = Re + RO2−

4F2X
(78)

LH2O2 = LO2H2 = Re

8F2X
(79)

Note that Eqs. (71), (72), (75), and (76) are the Onsager equations
and the cross terms satisfy the Onsager reciprocity relations. In
these equations, the driving forces are given not as gradients but
as differences in chemical potentials across the membrane, that is,
��O2 = �II

O2
− �I

O2
and ��H2 = �II

H2
− �I

H2
. Thus, the Lijs defined

here contain an additional length dimension in the denominator
compared to the usual definition [6]. Eq. (79) shows that the reci-
procity relations are obeyed not only for the bulk membrane but
also include interface transport properties embodied in RO2− (i.e.
3 It is easy to show that if the electrolyte material is a predominantly O2− con-
ductor with negligible H+ conduction, then IO2− and Ie are coupled. On the other
hand if the electrolyte material is a predominantly H+ conductor with negligible
O2− conduction, then IH+ and Ie are coupled.
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ell membrane may be discretized into as many segments as needed
or any desired level of accuracy [12]. As long as steady state is

aintained, equations of the form given in (75) through (79) con-
inue to be valid. Also, interface parameters are naturally included
n the transport equations. Thus, the generalized form of Onsager
ransport equations as given in terms of ��s across the membrane
emains valid, inclusive of interface effects even when transport
arameters depend upon local composition (and thus on position).

.6. Chemical potentials in the electrolyte just under
lectrode/electrolyte interfaces

Substitution of the equations for current densities into Eqs. (27),
28), (30), and (31) gives the chemical potentials �c

O2
, �c

H2
, �a

O2
, and

a
H2

as follows:

c
O2

= �I
O2

+ 4F

×
{

−
[rc

O2− (Re + RH+ ) + rc
e RH+ ]

X
EO2 +

[rc
O2− Re − rc

e RO2− ]

X
EH2

}
(80)

c
H2

= �I
H2

− 2F

×
{

[rc
H+ Re − rc

e RH+ ]

X
EO2 −

[rc
H+ (Re + RO2− ) + rc

e RO2− ]

X
EH2

}
(81)

a
O2

= �II
O2

− 4F

×
{

−
[ra

O2− (Re + RH+ ) + ra
e RH+ ]

X
EO2 +

[ra
O2− Re − ra

e RO2− ]

X
EH2

}
(82)

a
H2

= �II
H2

+ 2F

×
{

[ra
H+ Re − ra

e RH+ ]

X
EO2 −

[ra
H+ (Re + RO2− ) + ra

e RO2− ]

X
EH2

}
(83)

qs. (80) through (83) describe chemical potentials of O2 and H2
n the electrolyte, just inside the electrode/electrolyte interfaces at
CV in terms of parameters which are measureable experimentally,
t least in principle. An important point to note is that in general
he terms in ‘{}’ are not zero. Thus, the chemical potentials must
xhibit abrupt changes across interfaces [12,16]. That is, in general,
c
H2

/= �I
H2

, �a
H2

/= �II
H2

, �c
O2

/= �I
O2

and �a
O2

/= �II
O2

.
In many reported works on solid electrolytes, it has been

ommonly assumed that chemical potentials equilibrate across
nterfaces. The present work shows that such equilibration is not
o be expected. In fact, as shown previously [16], equilibration of
hemical potential across interfaces is generally not valid even if
he electrode is reversible. That is, reversible electrode does not

ean equilibration of the chemical potential of neutral species
cross electrode/electrolyte interfaces as is often assumed, when
here is a finite, nonzero chemical potential difference across the

embrane. Indeed, recent work on other systems (vapor/liquid
nterfaces) using non-equilibrium molecular dynamics simulations
as also shown that there are abrupt chemical potential jumps
cross interfaces [17]. It is easily seen that the ϕ also exhibits abrupt

hanges across the two interfaces. Fig. 4 shows a schematic of the
ariation of �H2 , �O2 and ϕ through the membrane and discontin-
ous changes across interfaces.

Abrupt changes in chemical potentials and electric potential
cross interfaces represent a manifestation of the existence of
Fig. 4. Schematic variations of �H2 , �O2 , and ϕ. Discontinuous changes in chemical
potentials and electric potential, ϕ, occur across the interfaces in all functions.

rather thin interfacial regions. This means that chemical potentials
and electric potential change smoothly within the individual phases
(gas and solid), but change abruptly at the interface. Within the
interfacial region itself, it is expected that chemical potentials and
electric potential vary continuously. The thinner is the interfacial
region, the more sharply do the chemical potentials and the electric
potential vary within the interfacial region. Thus, on a microscopic
scale (micron or a fraction of micron), discontinuous changes in
chemical potentials and electric potential occur across interfaces.

Substitution for �c
O2

and �c
H2

in Eq. (16), and �a
O2

and �a
H2

in
Eq. (17) gives the corresponding chemical potentials of H2O in the
electrolyte, just under the electrode/electrolyte interfaces, namely,

�c
H2O = �I

H2O − 2F

{
[rc

H+ Re + rc
O2− (Re + RH+ )]

X
EO2

−
[rc

H+ (Re + RO2− ) + rc
O2− Re]

X
EH2

}
(84)

�a
H2O = �II

H2O + 2F

{
[ra

H+ Re + ra
O2− (Re + RH+ )]

X
EO2

−
[ra

H+ (Re + RO2− ) + ra
O2− ]

X
EH2

}
(85)

Eqs. (84) and (85) show that the chemical potential of H2O must also
exhibit abrupt changes across interfaces since in general terms in
‘{}’ are nonzero. This result also shows further interesting features.
Suppose both the cathode and the anode are humidified to the same
degree, that is suppose �I

H2O = �II
H2O. Even then, �c

H2O /= �a
H2O. This

means there will be a gradient in �H2O through the membrane even
when the same partial pressure of H2O exists in the two gas phases
(cathode and anode).
2.7. Currents under load

When an external load is connected so that a finite current (IL)
flows through the external circuit, oxygen ion and proton current
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ensities are given by

O2− = −Re + RH+

X
EO2 + Re

X
EH2 + RH+ Re

X
IL (86)

nd

H+ = Re

X
EO2 − Re + RO2−

X
EH2 + RO2− Re

X
IL (87)

qs. (86) and (87) can also be written in terms of the load resistance,
L, as

O2− = −R′
e + RH+

X′ EO2 + R′
e

X′ EH2 (88)

nd

H+ = R′
e

X′ EO2 − R′
e + RO2−

X′ EH2 (89)

here we have written

′
e = ReRL

Re + RL
(90)

hich is the net electronic area specific resistance, including the
xternal load. Also,

′ = RH+ R′
e + RO2− R′

e + RH+ RO2− (91)

ote that Eqs. (88) and (89) are similar to Eqs. (64) and (65) and
atisfy the Onsager reciprocity relations. Fluxes of O2 and H2 are also
imilar to Eqs. (71) and (72) with Re replaced by R′

e, and X replaced
y X′, and are given by

O2 = −R′
e + RH+

16F2X′ ��O2 − R′
e

8F2X′ ��H2 (92)

nd

H2 = − R′
e

8F2X′ ��O2 − R′
e + RO2−

4F2X′ ��H2 (93)

qs. (92) and (93) can still be considered as ‘permeation’ fluxes
herein part of the coupling electron flux is through the external

oad. That is, Eqs. (92) and (93) represent permeation fluxes for
he combined system comprising the cell and the load. The corre-
ponding transport coefficients are the same as Eqs. (77) through
79) with Re replaced by R′

e and X replaced by X′, namely

′
O2O2

= R′
e + RH+

16F2X′ (94)

′
H2H2

= R′
e + RO2−

4F2X′ (95)

′
H2O2

= L′
O2H2

= R′
e

8F2X′ (96)

Finally, it is easily seen that

′
O2O2

L′
H2H2

−
(

L′
H2O2

)2 ≥ 0 (97)

s required [18].
Various limiting cases of the above equations can be examined,

ll satisfying Onsager reciprocity equations. In the short circuit
imit, R′

e = 0, for which

′
H2O2

= L′
O2H2

= 0 (98)

That is, there is no coupling between H2 and O2 fluxes at short
ircuit. Consider now R′

e → ∞, i.e. no load applied and negligible
lectronic conduction through the membrane. Then the corre-
ponding transport parameters are
′
O2O2

= 1
16F2(RH+ + RO2− )

(99)

′
H2H2

= 1
4F2(RH+ + RO2− )

(100)
rces 194 (2009) 753–762 761

and

L′
O2H2

= L′
H2O2

= 1
8F2(RH+ + RO2− )

(101)

In this case, the origin of coupling is purely ionic. In such a case

L′
O2O2

L′
H2H2

− (L′
H2O2

)2 = 0 (102)

Thus, the degree of coupling between H2 and O2 transport through
the membrane is a function of the net electronic resistance (includ-
ing internal and external) and varies between no coupling for zero
electronic resistance to maximum coupling for infinite electronic
resistance.

The chemical potentials of H2, O2, and H2O in the electrolyte,
just under the electrode/electrolyte interfaces, are the same as
(80)–(85) with Re replaced by R′

e which includes the load resistance,
RL (thus also replacing X by X′).

2.8. Significance of equations describing chemical potentials
inside the electrolyte as a function of various current densities and
transport parameters

Eqs. (80) through (83) describe chemical potentials of O2 and
H2 in terms of the various current densities (IO2− , IH+ , and Ie) and
transport parameters at OCV. The same equations are applicable
under load with Re replaced by R′

e and X replaced by X′. A key
point to note is that recognition and incorporation of local equi-
librium has made it possible to determine chemical potentials of
neutral species within the electrolyte. These equations show that
for a single fuel cell, since the ionic current densities (IO2− and
IH+ ) are in the opposite direction to the electronic current density
(Ie), the �H2 and �O2 in the electrolyte are always mathematically
bounded by values at the electrodes (that is by �I

H2
and �II

H2
; and

by �I
O2

and �II
O2

) [12]. However, when many cells are connected
in series, in an unbalanced cell the ionic and electronic currents
can be in the same direction (the electronic current changes direc-
tion). In such a case, the chemical potentials of H2 and O2 within
the electrolyte are not mathematically bounded. There are some
situations in which stack failure can occur as described previously
[16,19].

2.9. Possible experimental procedure for the verification of the
transport equations

The analysis given here assumes that the transport parameters
(RO2− , RH+ and Re) are independent of gas phase compositions and
of the net current transporting through the membrane. In many
experimental situations, this may not be the case. Nevertheless, if
this assumption is approximately valid, an experimental approach
can be envisioned for the measurement of transport parameters. In
what follows, this is illustrated using Eqs. (92) and (93).

The approach consists of applying a known load (RL) across the
cell. The cathode is exposed to a mixture of O2 and H2O. The anode
is exposed to a mixture of H2 and H2O. The corresponding chem-
ical potential differences of O2 and H2, namely ��O2 and ��H2 ,
can be determined based on the compositions (partial pressures)
of the gases. By conducting chemical analysis of incoming and exit-
ing gases at the two electrodes and measuring gas flow rates, the
net fluxes of O2 and H2, namely JO2 and JH2 , can be experimentally
measured as a function of the imposed ��O2 and ��H2 . Then, the
gas mixtures of the two electrodes are changed such that only one of

the chemical potential differences is altered at a time. For example,
consider changing ��O2 but keeping ��H2 fixed. The net fluxes of
O2 and H2, namely JO2 and JH2 , are again measured. This procedure
is repeated for various values of ��O2 for a fixed value of ��H2 .
The rate of change JO2 as a function of ��O2 for a fixed ��H2 gives
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′
O2O2

(Eq. (94)). Similarly, the rate of change of JH2 as a function of
�O2 for a fixed ��H2 gives L′

H2O2
.

A similar series of experiments is conducted wherein the ��H2
s systematically varied while fixing ��O2 . In this case, the rate of
hange of JO2 as a function of ��H2 for a fixed ��O2 gives L′

O2H2
nd the rate of change of JH2 as a function of ��H2 for a fixed ��O2
ives L′

H2H2
(Eq. (95)). The L′

H2O2
and L′

O2H2
determined from the

wo sets of experiments should be equal to each other and given by
q. (96). The above describes a possible experimental approach for
erification and general application of the equations derived here,
nd for the verification of Onsager reciprocity relations for transport
hrough mixed O2−, H+, and electron (hole) conductors. From these

easurements, transport parameters for the membrane, namely,

O2− , RH+ , and Re can be determined.

. Summary

The present manuscript has examined steady state transport
hrough mixed proton, oxygen ion, and electron (hole) conductors.
ransport through membranes in a fuel cell mode was exam-
ned. Transport properties of all transporting species (H+, O2−, e
r h) across cathode/electrolyte and anode/electrolyte interfaces
ere incorporated into the analysis and a simple equivalent circuit
as presented. Only steady state was examined. This allowed for

he use of an equivalent circuit in terms of internal EMFs (mea-
ures of chemical potential differences) and resistors (dissipative
omponents), without the need for elements describing ‘capac-
ty’. Ion transport properties across interfaces are measures of
lectrochemical charge transfer reactions at the physically sharp
lectrode/electrolyte interfaces (not including the extended porous
lectrode). Electron transport properties across interfaces are mea-
ures of direct electron transfer between the electrodes and the
lectrolyte. The open circuit voltage of cell/membrane is given in
erms of chemical potentials of H2 and O2 at the two electrodes
nd transport properties of the membrane including interfaces.
he resulting equation is similar to the Goldman–Hodgkin–Katz
quation used in cell physiology describing ion transport across
ell walls. Transport through the membrane, inclusive of interface

ransport properties, obeys Onsager relations. In many situations,

embranes can be very thin. In such cases, interface effects domi-
ate transport. The present analysis shows that Onsager reciprocity
elations are valid with interface parameters included in the trans-
ort equations. In the analysis, transport properties through the

[
[
[

[

rces 194 (2009) 753–762

bulk membrane were assumed to be position-independent. If they
are position-dependent, the entire cell can be discretized into
as many elements as required for a specified accuracy [12]. The
Onsager equations, also accounting for interface transfer, continue
to be valid. The present manuscript has examined transport of two
independent species (H and O). This resulted in two Nernst poten-
tials and three parallel circuit elements (including one for electronic
path) for any given segment (three segments—two interfacial and
one bulk) in the equivalent circuit. The generalization of this result
is that if there are N independent transporting ionic species, there
will be N Nernst potentials and (N + 1) parallel circuit elements for
any given segment.
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